Russian 中文 English

Tel.: 8615989623158

E-mail: sales@grandetop.com

Home >> Product >> Environmental Test Chambers >> Space and Planetary Environment Simulators
Planetary Environmental Simulator
  • Planetary Environmental Simulator
Planetary Environmental Simulator

Planetary Environmental Simulator

Planetary Environmental Test Facility 

Simulating Lunar and Martian Dust Environments Test Chamber 

Guangdong GRANDE Automatic Test Equipment Limited in collaboration with the China Space Agency has developed a facility for simulation of the effects of the Lunar & Martian dust environments.

Product Details

The simulator is able to provide the following environmental factors:

Ultra-high vacuum or atmospheric conditions;

Lunar/Martian dust conditions;

VUV/NUV radiation;

Thermal conditions/thermal cycling; 

And darkness.


The basic Dust Par cles Source includes a Lunar/Martian soil simulant container, a Dust Source Housing, and a funnel-like closed structure in which dust cloud is generated. Dust particles are agitated by a paddle actuator, allowing generating different configurations of the dust cloud. This system is also used to mix the particles in the stage of dust simulant preparation.


ParameterValue
Vacuum SystemVolume, m30.7~3000
Pumping speed (N2), l/s2,050
Basic vacuum, Torr< 2×10-7
Dust SourceLunar soil simulatorGSS-1
Dust thermal conditioningRT/+200
Dust activationVUV
Sample Holder/Sample Transfer SystemHolder size, cm2314
Temperature range,℃-180/+200
Mechanical testingRotary or Horizontally movable
VUV SourceType of VUV SourceG2 lamp
Wavelength, nm115-200

Planetary Environmental Simulators (PES) are advanced testing systems that replicate the extreme surface and atmospheric conditions of celestial bodies (e.g., Mars, Moon, Europa, Venus) to validate spacecraft, instruments, and habitats for interplanetary missions. Their applications bridge scientific research, engineering, and exploration:
1. Mars Surface Simulation

Atmosphere & Dust:

Simulates 6–9 mbar CO2-dominated atmosphere, perchlorate-rich dust storms, and -125°C to +20°C thermal cycles. Tests rover mobility (e.g., Perseverance wheel abrasion) and solar panel dust accumulation.

UV Radiation:

Intense 200–400 nm UV flux (1.5× Earth’s) to study degradation of organic-detection instruments (e.g., SAM on Curiosity).

Regolith Interactions:

Validates drilling systems (e.g., ExoMars) in Mars soil simulants (JSC Mars-1, Mojave Mars Simulant) under low pressure.

2.Lunar Environment Replication

ParameterSimulated ConditionsTest Application
Vacuum10-10 torrCold welding risk for deployable structures
Thermal Cycling-180°C (night) to +130°C (day)Artemis lander battery survival
Regolith AbrasionSharp, glass-rich dust (<100 μm)Spacesuit seal integrity
Solar WindH⁺/He2⁺ ion bombardment (1 keV)Solar array degradation over 10+ years

3. Icy Moon & Extreme Environments

Europa Subsurface Ocean Simulation:

Combines -160°C surface temps, high radiation (500 krad/hr), and salt-ice mechanics to test penetrators (e.g., Europa Lander).

Venus Hellscape Testing:

460°C + 92-bar CO2 atmosphere with sulfuric acid clouds for probe endurance validation (e.g., NASA’s LLISSE).

4. In-Situ Resource Utilization (ISRU)

Oxygen Extraction:

Tests MOXIE-like systems converting simulated Mars CO2 to O2 under dust contamination.

Water Mining:

Validates regolith heating/compaction tools for extracting ice from lunar polar simulants.

5. Instrument & Payload Qualification

Spectrometer Calibration:

IR/Raman sensors tuned in Mars-analog environments to detect biosignatures.

Seismometer Testing:Verifies sensitivity in simulated moonquakes (e.g., InSight on Mars).

6. Habitat & EVA System Validation

Habitat Pressure Integrity:

Tests inflatable modules (e.g., SpaceX Mars Base Alpha) under 0.38g gravity + dust storms.

Spacesuit Durability:

Exposes suits to lunar regolith abrasion and -150°C shadows (NASA xEMU).

Technical Capabilities

ModulePerformance RangeExample System
Atmosphere Control10-10 torr to 100 barVenus chamber (NASA GRC)
Thermal Systems-196°C to +500°CCryogenic LN₂ + resistive heaters
Dust SimulantsLunar (BP-1), Mars (MMS), Europa (Icelandic ice)ESA’s LUNA regolith simulant
Radiation SourcesProton/electron guns (1–200 MeV)JPL’s Europa Irradiation Facility
Partial Gravity0.16g (Moon) to 0.38g (Mars)Cable-suspended robotic platforms

Failure-Prevention Case Studies

Perseverance Rover Drill Clog (2021):

Post-failure PES tests revealed unanticipated pebble accumulation → redesigned percussion mechanism.

Philae Lander Bounce (Comet 67P):

Simulated low-gravity ice adhesion could have predicted harpoon failure.

Emerging Applications

Space Agriculture:

Tests crop growth in simulated Mars regolith/perchlorate mixes under LED sunlight.

Exoplanet Analogs:

Simulates TRAPPIST-1e conditions (tidally locked, N2-CO2 atmosphere) for future probes.

Nuclear-Powered Rovers:

Validates RTG shielding in Martian dust storms (e.g., NASA’s Kilopower).

Standards & Compliance

ISO 19632:2022 (planetary surface simulants)

NASA-STD-6016 (Mars entry/descent/landing systems)

ECSS-E-ST-10-12 (Europa mission environmental testing)

Conclusion: 

Planetary Environmental Simulators are mission-critical risk-mitigation tools – compressing the unknown extremes of alien worlds into controlled experiments. They enable "test like you fly" for everything from Mars helicopters to Europa submersibles, preventing costly failures in deep space. 

Leading Facilities:

NASA Glenn,s PEC (Planetary Environment Chamber)

DLR,s :envihab (Moon/Mars modules)

CALTECH,s Mars Yard

HAI,s Europa Simulation Chamber (Harbin Institute of Technology)

Metrostaff GmbH (modular planetary simulators)