Russian 中文 English

Tel.: 8615989623158

E-mail: sales@grandetop.com

Home >> Product >> eXtreme High Vacuum Chamber
XHV eXtreme High Vacuum Chamber Chamber
  • XHV eXtreme High Vacuum Chamber Chamber
XHV eXtreme High Vacuum Chamber Chamber

XHV eXtreme High Vacuum Chamber Chamber

XUV eXtreme High Vacuum Chambers achieve pressures below 10-12 Pa (10-14 mbar), enabling atomic-scale cleanliness for quantum technologies, particle physics, and fundamental research. Below are their technical specifications, applications, and operational principles:

Product Details

Core Definition & Technical Thresholds

ParameterXHV StandardComparison to UHV
Pressure Range<10-12 Pa (10-14–10-15 Pa)UHV: 10-7–10-12 Pa
Gas Density<26 molecules/cm3UHV: ~104 molecules/cm3
Outgassing Rate<10-13 mbar·L·s-1·cm-2UHV: <10-11 mbar·L·s-1·cm-2
Leak Rate<10-13 mbar·L·s-1UHV: <10-9 mbar·L·s-1

Critical Components & Technologies

Pumping Systems:Cryopumps: Capture gas molecules on 4K surfaces (liquid helium-cooled).

Non-Evaporable Getters (NEGs): Zr-V-Fe alloys chemically adsorb H2, CO, CO2 at 400–600°C.

Ion Sputter Pumps: Remove noble gases (He, Ne) via titanium sublimation.

Chamber Materials:

316L Stainless Steel: Low-carbon, electropolished (Ra <0.1 μm).

Copper Seals: Oxygen-free copper gaskets for ConFlat flanges.

Baking & Activation:

Bake at 250–400°C for 48–168 hours to desorb H2O.

NEG activation at 450°C under vacuum.

Key Applications

FieldUse CaseImpact
Quantum ComputingQubit fabrication (Si/SiGe, superconducting circuits)Reduces decoherence; enables T2 >2 ms
Particle PhysicsLHC beamlines, dark matter detectors (e.g., LUX-ZEPLIN)Minimizes beam-gas interactions
Gravitational WavesLIGO/Virgo interferometer opticsLowers phase noise from residual gas scattering
2D Material ScienceGrowth of defect-free graphene/MoS2Ensures carrier mobility >105 cm2/V·s
Nuclear FusionITER plasma confinement chambersPrevents fuel dilution

Operational Challenges & Solutions

ChallengeSolutionTechnical Approach
Hydrogen PermeationDouble-wall chambers with LN2 shieldTraps H2 diffusing from stainless steel
Helium AccumulationTitanium sublimation pumps (TSPs)Chemisorption of inert gases
Micro-vibrationsMagnetic levitation pumpsEliminates mechanical vibration transfer
Carbon Monoxide (CO)NEG coatings on chamber wallsSticking probability >0.3 for CO at 25°C

Achieving XHV: Step-by-Step Protocol

Initial Pumpdown:

Turbo-molecular pump to 10-7 Pa.

Baking Phase:

Heat to 300°C ±5°C for 72 hours under high vacuum.

NEG Activation:

Heat NEG panels to 450°C for 2 hours.

Cryopump Engagement:

Cool cryopanels to 4K; monitor pressure via Bayard-Alpert gauge.

Validation:

Use Residual Gas Analyzer (RGA) to verify H2 partial pressure <10-13 Pa.

Performance Metrics

MetricXHV StandardCutting-Edge Systems
Base Pressure<10-12 Pa<5×10-13 Pa (CERN XHV lab)
Outgassing Rate<10-13 mbar·L·s-1·cm-22×10-14 mbar·L·s-1·cm-2 (post-bake 316L)
Temperature Stability±0.1°CPID-controlled multi-zone heaters

Real-World Implementations

LIGO Optics Chambers:

XHV (10-14 Pa) reduces gas-phase noise, enabling detection of gravitational waves from 1.3 billion light-years away.

IBM Quantum Heron Processors:

XHV chambers with NEG coatings extend qubit coherence by 10× vs. UHV environments.

ITER Vacuum Vessel:

Double-wall cryopanel design maintains <10-11 Pa during plasma operation.


Future Directions

Room-Temperature XHV:

Photonic crystal surfaces to trap molecules via van der Waals forces (experimental).

AI-Optimized Baking:

Machine learning predicts outgassing decay curves to shorten bake times by 30%. 


Conclusion:

XHV chambers represent the pinnacle of vacuum technology—enabling zero-tolerance environments where single-molecule contamination can disrupt quantum states or particle beams. Their deployment is critical for next-gen quantum computers, fusion reactors, and cosmic observatories. 

Cryo-pumped XHV systems

Ion pumps for XHV

NEG-coated chambers

All-metal XHV gate valves.