Russian 中文 English

Tel.: 8615989623158

E-mail: sales@grandetop.com

Home >> Product >> eXtreme High Vacuum Chamber
Compact Hadron Collider
  • Compact Hadron Collider
  • Compact Hadron Collider
Compact Hadron ColliderCompact Hadron Collider

Compact Hadron Collider

Compact Hadron Colliders refer to particle acceleration devices that achieve radical size reduction (typically tabletop to room-scale) through innovative designs. While unable to reach TeV-scale energies like the LHC, they enable unique applications in research, medicine, and industry. Below are core parameters, technical solutions, and implementation scenarios:

Product Details

Core Parameter Comparison

ParameterCompact Hadron ColliderLarge Hadron Collider (LHC)
SizeTabletop (≤2 m) → Room-scale (20 m)27-km ring tunnel
Collision EnergykeV → 100 MeV14 TeV (proton-proton)
Particle TypesProtons/electrons/ionsProtons/heavy ions
Cost$100K – $5M> $10 billion
Vacuum Requirement10-6 – 10-9 mbar<10-13 mbar

Key Technical Solutions

Laser Wakefield Acceleration (LWFA)

Principle: Ultra-intense laser pulses generate plasma waves in gas, where electrons/protons "surf" to achieve GeV energies (1 cm acceleration ≈ 1 km in conventional accelerators).Example: BELLA Laser (USA) accelerated electrons to 4.25 GeV in 9 cm.

Dielectric Wall Accelerator (DWA)

Principle: High-voltage pulses applied to ceramic dielectric walls create GV/m electric fields for ion acceleration.

Progress: RadiaBeam (USA) developed compact proton sources (10–200 MeV) under 5 m length.

Superconducting Cyclotrons

Medical Application: Proton therapy systems (e.g., IBA Proteus ONE, diameter 2.5 m, energy 230 MeV).


Core Application Scenarios

1. Scientific Research & Education

Quantum Material Simulation:

Low-energy ion beams (e.g., <1 MeV protons) irradiate 2D materials (MoS2) to study defect dynamics.

Nuclear Physics Education:

Tabletop systems (e.g., PhysicsOpenLab’s 0.5 MeV proton beam) demonstrate Rutherford scattering.

2. Medical Applications

Proton Therapy:

Compact superconducting cyclotrons (<3 m diameter) enable tumor-targeted radiotherapy (deployed at Ruijin Hospital, Shanghai).

Isotope Production:

Small cyclotrons (e.g., GE MINItrace) generate medical isotopes (18F for PET, 68Ga for diagnostics).

3. Industrial Inspection

Neutron Imaging:

Proton beams (5–10 MeV) bombard lithium targets to produce neutrons for aerospace component nondestructive testing.

Ion Implantation:

Semiconductor doping (e.g., SiC power devices) using 0.1–1 MeV ion beams.


Representative Projects

ProjectOrganization/CountryTechnologyEnergy/SizePrimary Application
EuPRAXIAEuropeLWFAe⁻: 5 GeVFree-electron laser light source
TACMIT (USA)DWAp: 15 MeVCancer therapy
SCC-230IBA (China collab.)Supercond. Cyclotronp: 230 MeVTumor proton therapy
LaserBetatronLOA (France)LWFAX-ray: 100 keVDynamic material imaging

Technical Challenges & Solutions

ChallengeSolution
Large beam divergencePlasma lens focusing (>1000 T fields)
Energy instabilityFeedback control (laser jitter <0.1%)
Low particle fluxHigh-repetition lasers (kHz) / high-current ion sources
Radiation shieldingTungsten-lead composite (meets ICRP standards)

Future Directions

Energy Breakthroughs:

Cascaded laser acceleration (LBNL, USA) targets 10 GeV electrons (2025).

Miniaturization:

Chip-scale accelerators (Stanford NAT): Silicon photonic waveguides accelerate electrons (1 MeV/m).

Multidisciplinary Integration:

Laser-driven proton beams for nuclear fusion ignition (experiments at SIOM, Shanghai). 

Conclusion:

Compact hadron colliders bridge the gap between large-scale facilities and benchtop tools, offering low-cost, adaptable solutions for precision medicine, industrial inspection, and frontier research. Advances in laser plasma and superconducting technologies will enable GeV-class tabletop systems, democratizing particle physics.