Russian 中文 English

Tel.: 8615989623158

E-mail: sales@grandetop.com

Home >> Product >> eXtreme High Vacuum Chamber
Molecular Beam Epitaxy
  • Molecular Beam Epitaxy
Molecular Beam Epitaxy

Molecular Beam Epitaxy

MBE is an ultra-high vacuum (UHV/XHV) thin-film growth technique that enables atomic-layer-precision deposition of crystalline materials. By directing thermally evaporated elemental or molecular beams onto a heated single-crystal substrate, it achieves epitaxial growth (lattice-matched crystal structures) for advanced semiconductors, quantum materials, and heterostructures.

Product Details

Key Components

ComponentFunctionCritical Parameters
UHV/XHV ChamberMaintains contamination-free environmentBase pressure: 10-9~10-12Pa; Leak rate: <10-10Torr·L/s
Effusion CellsThermal evaporation sources for elements (Ga, As, Al, etc.)Temperature range: 100~1850°C; Flux stability: ±1%
Substrate HeaterHeats substrate to enable surface migration and crystallizationRange: RT~1500°C; Uniformity: ±2°C
RHEED Gun/DetectorReflection High-Energy Electron Diffraction: Real-time surface analysisEnergy: 5~50 keV; Oscillation monitoring precision: 0.01 monolayer (ML)
Quadrupole Mass Spectrometer (QMS)Monitors residual gases and beam fluxes

Core Technical Parameters

ParameterTypical RangeImpact on Performance
Growth Rate0.01~3,000 nm/hLow rates enable atomic-layer control (e.g., 1 ML ≈ 0.3 nm for GaAs)
Doping Precision10-14~1020cm-3Achieved via in-situ dopant sources (Si for n-type, Be for p-type)
UniformityThickness: ±1%; Doping: ±5%Critical for wafer-scale devices (e.g., 150-mm substrates)
Interface Sharpness<0.5 nmEnables quantum wells (QW) and superlattices with sub-monolayer abruptness

Primary Applications

Compound Semiconductor Devices:

GaAs/AlGaAs HEMTs (High-Electron-Mobility Transistors): For 5G/mmWave RF amplifiers.

InP-based Lasers: Telecom wavelengths (1.3~1.55 μm) with low threshold currents.Quantum Technologies:

Superconducting Qubits (Nb/Al/AlOₓ): Atomic-layer tunneling barriers for coherence times >100 μs.

Topological Insulators (Bi2Te3/Sb2Te3): Interfaces with spin-momentum locking.

Infrared Optoelectronics:HgCdTe IR Detectors: Bandgap-tuned for SWIR/MWIR/LWIR imaging (military/astronomy).

Low-Dimensional Materials:Quantum Dots (InAs/GaAs): Single-photon sources for quantum encryption.

2D Heterostructures (MoS2/WSe2): Van der Waals stacks for flexible electronics.


Operational Challenges & Mitigations

ChallengeSolution
Contamination ControlPre-growth substrate annealing at 600°C; Chamber bakeout at 200°C
Flux Calibration DriftReal-time RHEED feedback for growth rate adjustment
Dopant IncorporationUse valved cracker cells for precise Sb/Te doping
Oxide DepositionIntegrate RF plasma sources for atomic oxygen (O)

 Advanced Features in Modern MBE Systems

Multi-Chamber Integration: Transfer samples under UHV to analysis (STM/XPS) or processing modules.

Automated Beam Flux Control: AI-driven adjustment of cell temperatures based on RHEED oscillations.

Hybrid Techniques:Gas Source MBE (GSMBE): For phosphorus-based compounds (e.g., InGaP).

Migration-Enhanced Epitaxy (MEE): Improves GaN growth on mismatched substrates. 


Industry Standards & Certifications

ISO 14644-1: Cleanliness standards (Class 4 for loading chambers).

ASTM E595: Material outgassing compliance for UHV components.

SEMI S2/S8: Safety protocols for toxic materials (As, Cd, etc.). 


Conclusion:

MBE is the gold standard for atomically engineered materials, enabling breakthroughs in quantum computing, photonics, and nanoelectronics. Its unparalleled control over interfaces and doping is unmatched by CVD or sputtering, though throughput limitations restrict mass production. Future advancements focus on multi-wafer systems and AI-optimized growth recipes to scale quantum device fabrication.